Lakes, wetlands, and streams as predictors of land use/cover distribution.
نویسندگان
چکیده
The importance of the surrounding landscape to aquatic ecosystems has been well established. Most research linking aquatic ecosystems to landscapes has focused on the one-way effect of land on water. However, to understand fully the complex interactions between aquatic and terrestrial ecosystems, aquatic ecosystems must be seen not only as receptors of human modification of the landscape, but also as potential drivers of these modifications. We hypothesized that the presence of aquatic ecosystems influences the spatial distribution of human land use/cover of the nearby landscape (</=1 km) and that this influence has changed through time from the 1930s to the 1990s. To test this hypothesis, we compared the distribution of residential, agricultural, and forested land use/cover around aquatic ecosystems (lakes, wetlands, and streams) to the overall regional land use/cover proportion in an area in southeast Michigan, USA; we also compared the distribution of land use/cover around county roads/highway and towns (known determinants of many land use/cover patterns) to the regional proportion. We found that lakes, wetlands, and streams were strongly associated with the distribution of land use/cover, that each ecosystem type showed different patterns, and that the magnitude of the association was at least as strong as the association with human features. We also found that the area closest to aquatic ecosystems (<500 m) was more strongly associated with land use/cover distribution than areas further away. Finally, we found that the strength of the association between aquatic ecosystems and land use/cover increased from 1938 to 1995, although the overall patterns were similar through time. Our results show that a more complete understanding is needed of the role of aquatic ecosystems on the distribution of land use/cover.
منابع مشابه
Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA.
The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cove...
متن کاملInland wetlands mapping and vulnerability assessment using an integrated geographic information system and remote sensing techniques
The understanding of inland wetlands’ distribution and their level of vulnerability is important to enhance management and conservation efforts. The aim of the study was to map inland wetlands and assess their distribution pattern and vulnerability to natural and human disturbances such as climate change (temperature increase) and human activities by the year 2080. Inland wetland types i.e. for...
متن کاملLand cover land use mapping and change detection analysis using geographic information system and remote sensing
Land cover/land use categories are relevant components in land management. Understanding how land cover/land use change over time is necessary to assess the consequences of humans and natural stressors on the earth’s environment and resources. The aim of the study was to map and monitor the spatial and temporal change in land cover/land use for the periods of 1977, 1991 and 2016 and to predict ...
متن کاملSediment and total phosphorous contributors in Rock River watershed.
Total phosphorous (TP) and total suspended sediment (TSS) pollution is a problem in the US Midwest and is of particular concern in the Great Lakes region where many water bodies are already eutrophic. Increases in monoculture corn planting to feed ethanol based biofuel production could exacerbate these already stressed water bodies. In this study we expand on the previous studies relating lands...
متن کاملDissolved Organic Carbon as an Indicator of the Scale of Watershed Influence on Lakes and Rivers
Land use and land cover can have a significant impact on water chemistry, but the spatial scales at which landscape attributes exert a detectable influence on aquatic systems are not well known. This study quantifies the extent of the landscape influence using the proportion of wetlands in the watershed measured at different distances to predict dissolved organic carbon (DOC) concentrations in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental management
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2003